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O P T I M I Z A T I O N  OF T H E  D A M P I N G  D E C R E M E N T  OF FR EE 

O S C I L L A T I O N S  OF A V I S C O E L A S T I C  L A Y E R E D  S P H E R E  

W I T H  A L I M I T A T I O N  O N  W E I G H T  

V. A.  B u d u g a e v a  UDC 539.3 

The problem of synthesis of a multilayer spherical shell with maximum damping of natural 
oscillations from a finite set of viscoelastic materials is considered with a limitation on weight. 
The necessary conditions of optimality are obtained, a computational algorithm is derived, and 
an example of calculation is presented. 

1. Solving problems of the optimal design of layered structures, Bondarev et al. [1] showed that the 
damping level of a multilayer spherical shell made of a given set of viscoelastic materials can be increased 
by changing the relative position and relative thickness of the layers. An algorithm for optimal designing 
of shells of constant thickness with maximum damping of natural oscillations was developed in [1] using the 
conformity principle. It seems expedient to generalize the result obtained by introducing certain limitations 
on the working characteristics of the structure, for example, by limiting its weight. 

We formulate the following problem (see [1]): from a given set of materials, it is required to construct 
a multilayer shell with limited weight that ensures a minimum value of the selected quality criterion: 

F0 = hn [w(0)]. (1.1) 

Here oa = a:R + ia;1 is the complex natural frequency and 0 is the distribution of the density p and the Lam4 
parameters i and/5 along the radial coordinate. 

The natural frequency and form of free oscillations of the spherical shell are determined by the solution 
of the following problem: 

Oar ar -- a~ 02u Ou u 
O--- 7 + 2 - - , , .  -- p Or, ~ , ar = ( i  + 2p) b-Tr + 2i 7 '  

(1.2) 

ar = 2 ( i  + #) u + 1 Ou 7 ~ '  l < r < R, ar(1) = a , (R)  = 0. 

Here R is the outside radius of the shell, 1 is the inside radius of the shell, which is determined during solution 
of the problem, and the complex Lam4 parameters have the form [2] 

oo 

r l ,  (~R) = / R ~ = ( ~ )  cos (~R~)dr; 

0 

F~n(aOR) = / R~,,(r) sin (tORT) dr, 

0 

(i.3) 

where 
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o~ o~ 

F~n(wR ) = f R ,n ( r )  cos (wR'r) dr; F~n(wR ) : f R,n(~') sin (wRy) d r  

0 0 

[the subscript n is the layer number (n = 1, N)]. 
In calculating the integrals (1.3), we used relaxation kernel relations of the form [3] R = 

5 exp ( - f l t ) / t  1-~, where ~, a, and fl are empirical constants. 
For a homogeneous shell, the complex frequency is found from tim transcendental equation obtained 

by the solution of problem (1.2): 

f 4#k  [ 4p 4 # k [ 4 #  

Here k 2 = ga2/(A + 2#) (the bar above A and # is omitted). 
For a layered shell, the density and the Lam6 parameters are piecewise-constant functions of the radius, 

and the displacement and stresses on the boundaries of the layers are continuous. This allows us to extend 
solution (1.4) to the case of a layered shell and to obtain the following recursive relation for the stresses and 
displacements: 

(TN(R) O'1 (/) 

In this case, the following boundary conditions are satisfied: 

~N(R) = ~,(Z) = 0. 

In relation (1.5), G is the resultant matrix of the form 

gll g12 
G = = A n . A ~ - I - . - A 1 ,  

g21 g22  

where 

(1.5) 

(1.6) 

A ~ = A ~  an(rn) ibn(rn) -dn(rn-1)  b , ( r , - i )  . 

cn(rn) idn(r,)  - icn(r, , -1)  ia=(rn-l) ' 

An = (cn(rn-l)bn(rn-1) -- dn(rn-1)an(rn-1)) -1 (n = 1, N); 

a n - -  
k2 cos (knr) + -~  sin (knr); 
r 

]~n .2 
bn = - ~  cos ( k n r ) -  k~r sin (k~r); 

kn 
dn = -7- L r sin (knr) + \ r2 

Solving (1.5) with allowance for conditions (1.6), we obtain the following secular equation for the 
frequency of a multilayer spherical shell: 

g21 = 0. (1.7) 

2. We consider the problem of optimization of a viscoelastic, multilayer, hollow sphere that  ensures 
maximum damping of free oscillations and has a limitation on weight. Using the representation u(r, t) = 
exp ( iwt)zf fr) ,  a(r ,  t) = exp (iwt)z2(r), we reduce the initial problem (1.2) to solving a system of ordinary 
differential equations. Introducing the dimensionless variables zi = u/ro, z2 = at,  r* = r /ro ,  l* = 1/ro 
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P* = P/Po, A* = A/ao, #* = # /a0 ,  and w .2 = w2rgpo/cro, where r0, do, and Po are the characteristic length, 
stress, and density, and transforming the variable segment of integration [l, R] into the constant segment [0, 1] 
by replacing 

r = l + x(R - l), x e [0, 1], (2.1) 

we obtain 

Here 

Z 1 = AZ =- f ,  z2(O) = z2(1) = O. (2 .2 )  

2A(R - l) R - l 
+ + 

A : ; Z = {zl, z2}; f = {fl ,  f2}- 
4U(3A + 2#) 4#(n - l) ;V2u  o-j(n_z)l + 2.) 

We assume that the outside radius R is fixed and the inside radius l is determined during solution of 
the problem. As the control, we chose the pair {0(x), l}, where O(x) = {p(x), A(x), #(x)} is the distribution of 
the density and the Lam~ parameters.  The functional (1.1), which has the meaning of the damping decrement 
of natural oscillations of the sphere, is minimized with limitation on the weight of the sphere: 

Fl(p,l) ---- P. - riP ~ O. (2.3) 

Here P,  is the specified weight and r/ is  a certain number.  
The quantity w2(O, l) is found from system (2.2): 

1 1 

w2(O,l) = / J l ( x , Z , O , 1 ) d x /  f (2.4) 

0 0 

Here 

Jl(x,Z,O,l)  = (41,(3A._+. 2#) z~ 1 zf~r  2 J,,(x,Z,O,l) = pz~r 2, 
k r 2 ( A + 2 # )  + A+2-------~ 2] , - 

[H( - ,  0) has a similar form] and 

1 
/ [OJl(-,O) O J2(. ,0) 

B = k Ol a~' ~! 
0 

the dot indicates the omi t ted  arguments x, Z,  and l. 

Here 

2 ,.2z,,fl(. H ( - , 0 ) =  _ , 

2 R _  i r2z2 Of~i  'O)]dx; 

From the limitation (2.3) it is possible to express 51, assuming that  on variations (2.5), 5F1 -- 0: 
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and r depends on x under (2.1). In this case, the main par t  of the increment of the flmctional (2.4) for the 

variations 

t(x) = {p(x) ,A(x) ,#(x)} ,  x e D. t e IV, (2.5) 

O(x) = O(x) = {~(x) ,~(x) , f i (x)} ,  x ~ D 

(D E [0, 1] is a set of small measure, IV = {Or, . . . ,  Ore} is a specified finite discrete set, and m is the number 
of different materials) has the form 

1 - 1  

5w2= [ / J2 ( . ,O)dx]  { / [ H ( . , 0 ) - H ( - , 0 ) ] d x + B S 1 } .  (2.6) 

o D 



2 3 I 2 3 

l R I R 2 R 3 1 

Fig. 1 

5P = / ( R  - l)(~(x) - p(x))r 2 dx + B15l = 0. (2.7) 

D 

I 

Here B1 = /p(x)r[(R - / ) (2  - 3x) - l] dx. Substituting (2.7) into (2.6), we finally obtain 

0 

1 - 1  

5 F o = b I m ( w ) = / I m { [ / J 2 ( . , O ) d x ]  (2~z)-l[T(. ,O)-T(. ,O)]}dx, 
D 0 

where T ( . ,  (~) = g ( . ,  ~) - (B/B~)(R- l)r2~(x). 
The minimizing sequence of the control [0(x), l] is constructed using the negative formulation of Pon- 

tryagin's principle of maximum (see [4]), from which it follows that in the neighborhood of the nonoptimal 
control [0(x),/1, a new control [0(x), l + 51] exists, which improves the structure, by satisfying the limitation 
(2.3). This control is sought from the minimum condition for 6F0, i.e, 

1 --1 1 --1 

Im /12(.,O)dx] O)]dz oew.lmin/Im[[i.kj/.12(-,0)dx] (2a~)-tT(-,0)] dx. (2.8) 

Di  0 D~ 0 

3. In view of the aforesaid, the computational algorithm is derived as follows: 

1. The interv'al [0, 1] is divided by a uniform grid of nodes {xn} into a rather large number of segments 
of small length, which model the set of small measure Di. 

2. For the permissible control [0(x), l], we obtain the natural frequency by solving Eq. (1.7) by the 
Muller method [5]. 

3. We solve system (2.2) for the frequency obtained, assuming that on the segment Di the value of the 
vector of state variables is characterized by its value in the middle of the segment x = xi + hi2, where h is 
the length of the small segment. 

4. On the segment Di, we specify a new control 0 from the condition (2.8). 
5. If the new control coincides with the old control, we revert to item 2, increasing the subscript of 

the small segment by unity. Otherwise, from condition (2.3), we calculate 51i, assuming that Ft + 5F1 ~ 0: 

1 

51i = ( P, - r l / (R  - l)[l -t- x(R - l)]2p(x) dx - r l / (R  -1)r2[~(x)-p(x)] dx}(rlBl) -1. (3.1) 

0 D 

In this case, it is necessary to take into account that  the measure of the segments Di and t511 simuld be small 
enough to ensure the use of the linear approximation (3.1). 

6. With the new control [~(x), li + 51i], we revert to item 1 and consider the segment Di+l. 
As an example, we solve the following problem. Let a set of five viscoelastic materials be specified. 

The dimensionless characteristics of the materials are listed in Table 1. 
It is required to design a spherical shell with maximum damping of natural  oscillations whose weight 

is 3.5 times smaller than that  of a homogeneous shell of the densest material. The  initial approximation for 
the control is chosen in the form [0(x), l] = [1; 0.8], which corresponds to a homogeneous sphere with inside 
radius I -- 0.8 made of material No. 1 (see Table 1). This sphere has a weight of 0.65 and a natural frequency 
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TABLE 1 

Material P 

1 4.00 

2 2.86 

3 1.75 

4 1.00 

5 2.90 

E 

90 

50 

30 

15 

65 

/ /  

0.25 

0.25 

0.25 

0.25 

0.25 

0.4 

0.2 

0.2 

0.2 

0.3 

a 

1 0.05 

1 0.05 

1 0.05 

1 0.05 

1 0.05 

of 6.687 - 3.29i. Optimization yields a four-layer sphere consisting of alternating materials Nos. 2 and 3 (see 
Table 1), with inside radius l = 0.92587 and weight 0.1857. The sequence of the layers is as follows: material 
No. 2 on [1, R1], material No. 3 on [R1, R2], material No. 2 on [R2, R3], and material No. 3 on [R3, 1]. Here 
R1 = 0.9718, R2 = 0.9778, and R3 -- 0.99703 (see Fig. 1). 

This sphere has a frequency 2.64 - 7.46 i, i.e., its damping properties are improved by more than a 
factor of 2. 
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